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Statistical mechanics of fluidized granular media: Short-range velocity correlations
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A statistical mechanical study of fluidized granular media is presented. Using a special energy injection
mechanism, homogeneous fluidized stationary states are obtained. Molecular dynamics simulations and theo-
retical analysis of the inelastic hard-disk model show that there is a large asymmetry in the two-particle
distribution function between pairs that approach and separate. Large velocity correlations appear in the
postcollisional states due to the dissipative character of the collision rule. These correlations can be well-
characterized by a state dependent pair correlation function at contact. It is also found that velocity correlations
are present for pairs that are about to collide. Particles arrive at collisions with a higher probability that their
velocities are parallel rather than antiparallel. These dynamical correlations lead to a decrease of the pressure
and of the collision frequency as compared to their Enskog values. A phenomenological modified equation of
state is presented.
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[. INTRODUCTION describe these nonequilibrium steady stéadiSSSS$, consid-
ering the dissipativityg, defined agyj=(1—«)/2, as the pa-

There has been much interest recently devoted to the deameter responsible for deviations from the equilibrium hard
scription of granular media. The understanding of theirsphere system.
physical properties is important because they appear in many Letting a system composed of IHS grains to evolve freely
different phenomena taking place in our daily life as well aswith periodic boundary conditions, it cools down homoge-
in various industrial processes. Experiments have been daeously. This homogeneous cooling stéttCS has been
vised which have permitted one to focus on many differentwidely studied[16,19,21,22 and because of its simplicity
and new aspects. When subjected to injection of enérgy the HCS has been used as a reference state to build up theo-
brated plates, for examplethey present many similarities ries for nonhomogeneous states. It is the analog of the equi-
with fluids: convection takes place, patterns can form, andibrium state(with a Maxwellian distributionfor elastic sys-
time-periodicity may be observdd—8|. tems[23—25. Among other features, it has been shown that,

For those fluidized granular media, careful investigationdn this state, the velocity distribution function is not Max-
have permitted one to test the adequacy of hydrodynamicatellian, having a nonvanishing fourth cumulant and a long
continuum equations generalized to take into account the disrelocity tail [22]. Also, long-range velocity correlations are
sipation of energy due to the inelasticity of the collisionsdeveloped in the form of vortex fluctuatioh®6].
between the grains. Those equations are usually closed with It has been realized that, for any given value of the inelas-
the help of an equation of state and of phenomenologicdicity, however small, there is always a size over which the
laws inspired by the hard sphere model for flu[@s-14]. homogeneous reference state loses its stability. The system
Also, kinetic theory models have been studied obtainingundergoes a transition towards a state with a shear flow spon-
good accord with computer simulations in the low densitytaneously developing and possibly towards an inhomoge-
caseq§15-17. neous clustered staf@1,18,19,27,2B In order to character-

In most of these works, granular media are described miize intrinsic properties like an equation of state, one needs to
croscopically by means of the inelastic hard sph@ksS) consider stable homogeneous states before any instability oc-
model. Grains are modeled as soft hard spheres that dissipaters. This means in general to consider slight inelasticities
energy at collision through a constant restitution coefficientand finite system sizes whereNléffects are preseny being
a. It is quite remarkable that such a simple model can althe number of grains.
ready account for many peculiarities of the observed behav- Computer simulation techniques have proven very valu-
ior [18-24. able in granular studies: as in molecular dynamigtD),

In this paper we would like to go one step further: namelycomputers are used to integrate numerically the equations of
to investigate the IHS model as if it was a genuine statisticamotion of a few hundred to a few thousand grains whose
mechanical model for a granular fluid, and examine the efinteraction is usually limited to inelastic collisions. The com-
fects of the inelasticity on the statistical properties of theputed behavior compares generally well with experiments,
fluid. An obvious difference is the absence of any equilib-which give confidence in the adequacy of the inelastic hard
rium state. Left to itself, an assembly of inelastic hardsphere model to account for most of the specificities of
spheres will evolve towards a final state with no motion. Onegranular fluids. We are going to use such a technique with a
can, however, achieve stationary states by allowing contachechanism added in order to keep the kinetic energy of the
with an energy reservoir, but those states are nonequilibriurgrains constant.
states with a permanent energy flow coming from the reser- The essential result obtained is the characterization of
voir and dissipated at collisions into the internal elasticity ofshort-range correlations which are built in granular fluid
the grains(and neglected for our purposét is our aim to  models and which determine both the statémjuation of
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stat¢ and dynamical propertiegkinetic equation of the  the homogeneity of the fluid or, in the case of the stochastic
granular fluid. The pressure of the stationary state is comforces, adding other dynamical effe¢&i].
puted from its mechanical definition and we can show that it In this article we use a thermalizing method that both
is related to the pair correlation function at contact for pre-preserves the homogeneity and the dynamical properties of
collisional configurations only. This induces an extra vari-the granular fluid. Formally, each time two particles collide,
able in the pair correlation function, the angle between relathe dissipated energy is reinjected immediately into the sys-
tive distance and relative velocity at collision. tem by multiplying all particle velocities by the same factor.
Second, the kinetic description of the stationary state iShis factor is chosen each time in order to keep kinetic en-
well-described by thémodified hierarchy equations. In or- ergy constant. As the IHS model does not have an intrinsic
der to write a closed equation for the one-particle distributionenergy(or time) scale the rescaling of all velocities does not
function, like the Enskog equation for hard spheres, somehange the evolution of the system, the collision sequence
assumptions are made on the two particle distribution func¢thus all physical phenomehis preserved but viewed at a
tion. In Enskog’s equation, it is assumed that the particleglifferent speed. In this sense this thermostating mechanism is
that collide do not have velocity correlatiofsr dynamical the most appropriate for the HCS.
correlation$. When two particles are at contact with ap- In this nonequilibrium steady stattNESS all macro-
proaching velocitiegprecollisional statg it is assumed that scopic quantities are stationary and can be averaged in nu-
the two particle distribution functiorf® can be well- merical simulations. If we set the initial energy to give a

approximated by29] temperature equal to one, then all averaged quantities corre-
spond to computing them at this temperature. To obtain the
F@(r,vi,15,V2) (= Vi 119) 8(r 15— 0) value at another temperature, simple dimensional analysis

gives the desired value. For example pifess is the com-

=f1) (1) RV _
XEPV) TP (v2) O (= V12 1) 81— 0), - (D) puted pressure in the NESS, the actual value of the pressure

where y=g(o") is the pair correlation function at contact at another temperatuf_éls p= pNES.ST' .

and the Heaviside function guarantees that it is a precolli- The_IHS model_ls S'”_‘“'ated using event driven mol_e_cular
sional state. Note that in elastic systems at equilibrium, théjynamlcs[32]. A direct |mplementa_t|on of the therme}llzmg
previous relation is exact. We show here that this assumptioﬂj‘etmd would lead to a_computanonal cost _proport|o_nal to
is no longer true for inelastic hard spheres, with an increase € tOt"’.‘I number of partlgles fqr each collision, making it
probability that colliding disks or spheres are parallel ratheljmpOSSIbIe to make long simulations. But we can take advan-

than antiparallel, at least for moderately dense fluids. Suci;fige of the lack of an energy scale to make it much faster. In

velocity correlations might also appear in elastic fluids buteffect, rescaling all velocities is equivalent to rescaling the

only under nonequilibrium regime&ypically over macro- time. We define a rescaled time by the relatits+ ydt with
scopic scalgs Here they appear on the shortest scales, those
which correspond to molecular distances, only because of the E(t)
dissipative character of the microscopic dynamics. v= E(0)’ 2
The article is organized as follows: first, we present with
some detail the simulation technique which has been used.
As already mentioned, we simulate grain dynamics at conwhereE is the total energy in the system. Note thais a
stant energy: at every collision, all particle velocities are respjecewise constant decreasing function. It can be directly

caled so as to keep the total kinetic energy constant. Weyacyeq that if rescaled velocities are defined/air/ds,
present the technique and emphasize in particular its equwaﬁ h led kineti LS /o) | d
lence with a time-rescaling change. Next we analyze thé, en the rescaled kinetic energi € 2m/2v7) is conserved.
pressure and the pair-correlation function in the stationar L -
state by making time averages of observables and configura"€2/ing instability 28].

tions. The analysis leads in particular to the need to consider Thgn, the S|mglat|on 'S.done for the cooling IHS.rr.lodeI
velocity correlations which, as will be shown, are also re—(that is, no velocity rescaling is doneut at each collision

sponsible for a pressure drop. This is done in the fourttjfhe new Kinetic energy is computed apds evaluated using
section, before the conclusions. Eqg. (2). In the simulation, then, the energy and the average

velocity decrease, but the rescaled velocities are computed

using v=Vv/y. Having the rescaled velocities, all the static
properties can be computed directly. Since the functids
a piecewise constant function, teéime can be integrated in

In the HCS the system is in a nonstationary state that doethe simulation; this allows one to make periodical measure-
not allow one to make time averages of different propertiesments in the NES$equally spaced iis).
It is then necessary to inject energy into the system in order Finally, to avoid roundoff errors, each time the kinetic
to keep it stationary. Different methods have been usedenergy has decreased by some orders of magnitydeally
mainly the injection of energy through the wallgbrating or 10~/ of the initial valug a real velocity rescaling is done to
stochastig, by external field€like the flow in a pipe, or by  return the temperature equal to one. In this process the center
stochastic forces acting on the particlsge, for example, of mass velocity is also subtracted because, otherwise, small
[30]). These methods have the disadvantage of destroyingrrors will be amplified by the rescaling.

his transformation has been successfully used to study the

Il. CONSTANT ENERGY SIMULATIONS
OF THE IHS MODEL
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As already mentioned the HCS becomes unstéhiear- for any isotropic system composed of particles that interact
ing instability) for certain values of dissipativity, density, with pairwise forces. If the total volume ¢ and the total
and system size. Given values for the dissipativity and denkinetic energy iK, in two dimensions the pressure is given
sity, the system sizénumber of particlesis constrained to by
be smaller than a certain value to keep the system homoge-

neous. In two dimensions for a low density and low dissipa- _ (Ky 1 S E 5
tion case, it is given by19] P= ~av\& "itFi) ®)
N _m 3 In the NESS, kinetic energy is constant and equaNto
max ' ( ) . . . .. .
an and the forces are impulsive ones. Using the collision rule, it

. ___is easy to check that the forces are given by
For larger densities there are more complex expressions

written in terms of the transport coefficients, but in all cases ~n

. > . = F.=—(1— Vil o(t—t::
there is a maximum system size over which the system be- g (L= afvij-riri; ot —ty) C)
comes unstable. This phenomenon does not allow one Q. et

simulate large systemsfor example, forn=0.2 andq e velocity is evaluated before the collision.

=0.02, Nina=800) and finite size effects are obtained. T0 = e if the average is written as a time average, the delta
avoid these effects, simulations with different numbers ofgnctions are integrated giving

particles are done and then the results are extrapolated to the
infinite size limit. The extrapolation is done using the stan- 1—

ij Is the collision time for the pair—j, and the rela-

) AN q
dard model for any quantity that does not vanish in this limit, p=n+ 4. > i riil, (7)
that is, for any quantity its size dependence is modeled as colls
A(N)=A_.+A;/N. (4  Whereris the averaging time.

In simulations we measure the quantity
WhenN,,axis smaller than around 1000, the effects of the

shearing instability are present before the critical value as _1-q S vy r| )
fluctuations in thek=27/L mode of the shearing velocity pl_Nm"S &'

[28]. These fluctuations have both large amplitudes and long

correlation timegdivergent at the critical pointSome quan- in terms of which the total pressure is given by

tities couple strongly with this fluctuating fiel@or example,

the pressuneand small system sizes must be studied to ex- ny

trapolate to infinity. p=n+—-p1, )

We present a series of simulations in two dimensions for
the IHS model in the nonequilibrium steady state alreadywherev is the collision frequency.
described. Dimensions are chosen such that the disk diam- The results from the simulations fitted linearly wigrare
eter, particle masses, and initial temperature are set equal to

one. The simulations are done at three different number den- p;(n=0.09=1.7721—q)—0.163),
sities M=N/V): n=0.05,n=0.1, andn=0.2. In each case
the dissipation coefficient takes the valugs 0, q=0.002, p1(n=0.1)=1.7721—-q)—0.262,
g=0.005,g=0.01, andg=0.02. Given the small values of
the dissipation coefficients, long simulations are needed to p1(n=0.2=1.7721—q)—0.528). (10
obtain good statistics in order to identify thedependence of
the different quantities. That collected can be fitted to
As the simulations are done for small dissipations, the
results are presented as a series in the coefficiedtso, p1=+/7(1—q)—2.67qn. (11

when possible, the results are condensed in power expan-
sions in the density, but these expressions must not be intefhe average in Eq5) can also be written as an ensemble
preted as assuming that these quantities are necessarily asaerage
lytic in density or dissipativity.

Finally, units are chosen such that the disk diametand (1—a) [y )
the particles masses are set to one. Also, the temperature in pP=n+—y f F9(1,2)|viz 112
the NESS is fixed to one.

X O(—Vqy r19)drdv,dv,dé, (12
Il VIRIAL PRESSURE where 6 is the angle between the relative velocity and the

As in granular media there is no equivalent to a free entelative position. Assuming lack of velocity correlations at
ergy or an entropy, the pressure cannot be defined thermeaollisions, the two particle distribution function can be re-
dynamically but only mechanically. We use the virial expres-placed by Eq.(1). In this case, the integrals can be done
sion for the pressur83] that is a mechanical definition valid explicitly giving
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n2m(1—q)x ] |

p=n+ 5 (13

Then, in this approximatior, can be expressed as

2nmy

(1-a). (14

pP1=
v =

To study the validity of this approximation and compare it
with the numerical result¢1l), we need to study the pair

correlation function at contacty, and the collision fre-
quency,v.

A. Pair correlation function at contact . | i : L v
0 T /4 /2 3n/4 T

For hard particles systems, the pair correlation function at 0
contact y is defined in elastic systems as=g(r=c"),
whereg(r) is the pair correlation function and is the par- FIG. 1. Estimation ofy(6) obtained in MD simulationgdots

ticle diameter. In granular media this definition is somewhatcompared to the theoretical prediction. The simulation parameters
ambiguous and a direct application of the classical compute@réN=1000,n=0.02, andy=0.1. The discrepancy ne#= /2 is
tional methodg34] to obtainy does not give the most rel- €xplained in the text.

evant result. o o )

The pair correlation function is defined in elastic systems [N the Enskog approximation, the precollisional pair cor-
as the probability of having two particles separated at a distelation function is a constan. In this approximation, the
tancer, with an adequate normalization. This definition doescomplete function is
not take into account the relative motion of the two particles

since it is known that in equilibrium, positions are not cor- Xo0» cog 0)<0
related with velocities. But, as it is shown below, in granular ~ X( 0)= Yo[ oS 6)%+ a?sin(6)2] ", cog §)>0.
media, positions and velocities are highly correlated even in (16)
the low density limit. The pair correlation function behaves

differently if the two particles approach or separate. This function is discontinuous a#= =+ /2. Its average is

In Enskog’s kinetic theory, the factor that appears in Yoi(1+ 1), which can be understood knowing that the post-

Eq. (1), in the CO”'.S'Qnal term, in ihe virial pressure, an(_:i N collisional normal relative velocity ige times smaller than
the transport coefficients must be understood as the pair coj

i . X ~“the precollisional one. That makes that the colliding pair
relation function at contact for particles that are approachmgi;ests 14 times longer in the postcollisional position, giving
and not for the ones that separate. In what follows we defin . . i : '
and describe the basic properties of a generaljgembeffi- the previously obtained averagirmally the time the par

. ; . ticles stay at contact is zero, bytis the limit of g(r) that
cient that erends on the dynam|cal state of the particles. can be well-defined for finite bins where the pair stays finite
We define the pair correlation functig{r, ) as propor-

tional to the number of pairs that are separated by a distance

trhinrilgli(?/r:\/ilgg tan'?lheet;\e(;:,:/::linzgt]iinr(iasla(tzlr\mlgsgzsslﬂ?:rr: &rﬁ sheared elastic fluid®9]. In that case the origin of the dis-
Y .continuity is the nonequilibrium character of the one-particle

gse;ngoonoeuio\:\/?rg;;(:Lséaunscue;' -;mscg?gg%gffﬁz?gm%&fed "istribution function. In our case it is originated by the non-
g y P conservative collision rule.

gh]? gzneraligeii pair_coJrrrtzlation function at contgs) is The discontinuity iny(#) makes that the extrapolation of
efined axy(0) =g(r=o",0). eg(r,¢9) to contact presents numerical problems. For the pre-

v lTWO fctlﬁssers] ?;.p;ws czn ibe 'dﬁir:/t'f'fﬁ ?ctclf]ordmgr;ti t? th collisional anglegy is a smooth function but for the postcol-
alue of the angle: if cos(f) is positive then the particles lisional ones there is a discontinuity line arriving @t /2

,f\‘,:/i Siﬂg;?;ggaoosfggglf??encﬂﬁ;?;ﬁ;?g?ag; IISn Tﬁgi\t've‘;g_&‘ that prevents one from obtaining good estimationg, dbr
P bp bp angles slightly belowsr/2. In Fig. 1 a numerical estimation

exprossed in terms of the precolisonal one. Uaing the ol Y(?) obtained i MD sifulations for alow densiy case i
sion rule and the conservation of probabilit)./ during a colli- presented. The comparison with the Enskog theoretical value

sion it is found that ifd< /2 (postcollisional E)i‘gté(lﬁg |fsaig|;-ood except for 80= §<90° where it was ex
¥(0)=[cog 6)2+ a?sin( 6)2]~ x[ 7—tan L(a tan( 6))], In the clustering regime of large systertvehere the sys-
(15)  temis no longer homogeneguslarge dependence gfon 6
has been observed, for the precollisional angig%36. In
where [7w—tan (atan(d))]>m/2 is the precollisional our case, statistical errors in the results of molecular dynam-
angle that gives the postcollisional angle ics simulations do not allow one to determine if there is a

Thié kind of discontinuity iny(6#) has been found in
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dependence for precollisional angles, contrary to the clear Ky
dependence for the postcollisional angles. Neverthelegs if VZZ\/;nX( 1- 3—2) (22
depends on the precollisional angle, it is small and not like
the one reported in the clustering regime.

We define the pair correlation function at contagt,as
the average oj(6) over the precollisional angles only. The
simulation results foly, fitted linearly withq, are

where y must be understood as the precollisional value.
Both y and the term (% k,/32) have a positive depen-

dence ong, but the MD resultg21) show a negative one.

This discrepancy shows that the hypothesis of lack of veloc-

_ _ ity correlations is false and must be modified. Also, when the
x(n=0.09=1+0.0655+ 0.051, numerical values foly [Eq. (17)] and v [Eq. (21)] are re-
¥(n=0.1)=1+0.1389+0.053], placed in the approximatio(l4) for p, the predicted pres-

sure is larger than the MD valugll). That is, using the
x(nN=0.2)=1+0.3129+0.07Qy. (17)  approximation that the two-particle distribution function can

be factorized as in Eq.l) the predicted pressure is larger
An empirical expression for in the two-dimensional than the observed one.
(2D) elastic case i$37]

IV. VELOCITY CORRELATIONS AT COLLISIONS
m(25—4n)

x(q=0)=1+ a2 n

(18 Special MD measurements are done to study the source of
the discrepancies in pressure and collision frequency. We

A comparison with the measured values show that, for thé:ompute numerically collisional averages sensible to the

IHS model, there is a very small dependenceqoiWithin presence of velocity correlations at contact for precollisional

. . . states.
the gtansucal error it can be Sf"“d thadoes_ not depend o For a system composed of particles that interact with hard
and its value is the same as in the elastic case.

core forces, the collision probability is given in two-

L . dimensions by
B. Velocity distribution and collision frequency

It is known that the velocity distribution function for the dPeoi(1,2) ¢ | vy (}|f(2)(1,2) S(r1p— {,-)
HCS of the IHS model is not a Maxwellian but a distorted R
one. In the low velocity region, it is predicted that the fourth X O (—Vqy r1p)dadvidv,drdr,, (23

cumulant is not zero and using the Boltzmann-Enskog equa-
tion its valve has been predictg2?]. The fourth cumulantis where o is the particle diameter an® is the Heaviside
defined as function that restrict the velocities to precollisional states.
Collisional averages, defined as the average of any quantity
(v —2(v?)? at every collision in the system, can be computed using the
(v%)?

(19 previous probability distribution.

4

and the predicted value using the Boltzmann—Enskog equa- 1 @) -
tion is for small values of (Aeol)= o | A(1,21(12)|v1, o

ky~—2q+22.87%°. (20) X O(— vy o)dodv,dv, (24)

The fourth cumulant is measured in the MD simulations
obtaining values consistent with the theoretical predictions. = _f A(1,2)f3)(12)|v,—vy|dbdv,dv,,
The collision frequency is defined as the average num- nv
ber of collisions per particle and ursttime. So definedy is
a stationary quantity. The simulation results fitted linearlywhereb is the impact parameter. The sigr J in the aver-
with q are age means tha is evaluated with the precollisional veloci-
ties and that,=r;— . It must be remarked that the above
v(n=0.05=0.189-0.0042, defined collisional average only takes into account the pre-
collisional part off ().
v(n=0.1)=0.403-0.023, In the hypothesis of absence of precollisional velocity
correlations at contact, the two particle distribution function
v(n=0.2)=0.929-0.277. (21) s written as in Eq(1). As the mean velocity vanishes, this

o ) ) approximation implies that the following collisional average
The collision frequency can be estimated using the apspould vanish.

proximation that there are no velocity correlations at contact

[Eq. (1)]. Taking into account the distortion from the Max- V1oV,
wellian velocity distribution, the collision frequency is given = <1—> . (25
by [22] V2= vy coll(=)
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1 ' pair recollideg and, second, when the pair recollides, their

1 velocities are correlated, being more parallel. Theepen-
0005 oo =00 i dence and density dependence can be well-understood in this
model because the parallelization is proportionaj tmd the
recollision probability ton.

This interpretation is also supported by the results in pres-
sure and collision frequency. In effect, the parallelization of
velocities after collisions produces that, in recollisions, the
approaching relative velocities are smaller, decreasing the
collision frequency. Also the transferred momentum, which
averaged givep,, is smaller at each collision. The combi-
nation of these two effects gives that the velocity correlations
produce smaller values for the pressure. The fact that the
effects of the correlations ihl and p, are numerically simi-
lar is also an indication that the two effects have the same
origin.

FIG. 2. Values ofl" obtained in MD simulations for an elastic At low density, precollision velocity correlations are
case and a dissipative case as a function of the inverse of the nuramall. This explains the good agreement between the simu-
ber of particlesN. The solid circle indicates the extrapolated value lations and the theoretical predictions using Enskog’s theory
for the dissipative system. The global densitynis 0.1. for x(6) in Fig. 1.

Precollisional velocity correlations are also present in
It must be remarked that in an elastic fluid at equilibrium Eq.elastic fluids, but only under nonequilibrium conditions. Low
(1) is exact and’™ must vanish exactly. frequency and long wavelength phenoméwaere hydrody-

This property make$' a good test for the hypothesis of namics is valigl are usually studied as perturbations over
the lack of velocity correlations in stationary states. Thislocal equilibrium states where no velocity correlations exist.
quantity couples strongly with the velocity fluctuation so In granular fluids, the system is always out of equilibrium
careful extrapolation to the infinite system must be done. Irand velocity correlations are always present. For a given dis-
Fig. 2 we show the extrapolation procedure for a typicalsipation, there is no regime with no velocity correlations
series of simulations. For small system siteis negative as  around which perturbation analysis can be done.

a consequence of the conservation of total momentum. In In elastic fluids, the factorizatiofil) is exact at equilib-
finite systems if one particle has a veloditythe others have rium and it allows one to compute static properties like the
in average a velocity equal tovy/(N—1), leading to nega- pressure and the collision frequency. From this starting
tive values forT". For large systems, the shearing instability point, the Enskog equation is built to describe the time evo-
appears giving rise to a dramatic increasd’ofTo get the lution of the system in an approximate wéi neglects pre-
extrapolated value to infinite system size, we consider syseollisional velocity correlations in every regimelo mimic
tems up to a certain size where no signal of the instability ithe Enskog approach for granular fluids, we should take an

-0.005

-0.01

g

TR =
EXICN % 2
1IN

present N=1500 in the case of the figure equation that includes velocity correlations, even in the HCS,
After extrapolation to infinity system size, the obtainedin order to predict accurately the static properties: pressure,
results fitted linearly withg are collision frequency, and dissipation rate.
At low density and/or dissipation, the velocity correla-
I'(n=0.09=0.09%, tions are small. Then the Boltzmann—Enskog equation can

be used to describe granular fluids with the same degree of
approximation as for elastic fluids. For dense dissipative sys-
tems more complex theories, that take into account recolli-
sions(for example, ring equations88,17]), are necessary.

I'(n=0.1)=0.269,
I'(n=0.2)=0.442). (26)

That can be collected in the general expression

V. CONCLUSIONS
'=2.29n. (27
Different properties for the IHS model for granular fluids,

This result means that in effect there are short-range veput in the homogeneous cooling state, have been carefully
locity correlations with origins in the dissipative character of studied. Using a time rescaling formalism it was possible to
the fluid. The fact that the correlation is positive means thabbtain precise averages in MD simulations, allowing one to
particles arrive at collisions with velocities more parallel study the dissipation and density dependence of these prop-
than if there were no correlations. This phenomenon can berties. Dissipation took values from=0 to q=0.02 and
understood in terms of recollisions since, for the IHS modelnumber density fronm=0.05 ton=0.2.
the velocities of the particles after a collision become more In all cases it was found that the velocity distribution is
parallel than in the elastic case. This parallelization has twmot Maxwellian and the fourth cumulaky is different from
effects: first it increases the probability of having a recolli- zero. Its value does not depend on density and it is in good
sion (that is, after colliding with a third particle the tagged accord with the kinetic theory predictions.
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A distinction is made between the pair correlation func-
tion at contact for precollisional and postcollisional states.
The first is the one used in kinetic theaignskog'’s theory
and it was found that is has a very small dependence on
dissipation, taking the same value than for elastic disks. The v*
postcollisional pair correlation function takes larger values 12
and it can be fully predicted in terms of the precollisional
function.
Collisional averages indicate that particles that are about
to collide are correlated in a nontrivial way, particles arrive
at collisions with velocities that are more parallel than in an
elastic fluid. The computed correlation, that is proportional
to density and dissipation, has its origin in recollisions: due
to dissipation, particles that collide emerge with more paral-
lel velocities than in the elastic case and, when they recol- FIG. 3. Geometry of an inelastic collisiony, (vi,) is the in-
lide, their velocities are still more parallel. Results obtainedcoming (outgoing relative velocity ande is the normal vector to
for pressure and collision frequency also show the signaturthe collision.
of velocity correlations at collisions. The effect of these cor-
relations is to reduce the collision frequency and the transhard spheredisk) system implies that the two-particle dis-
ferred momentum at collisions, thus reducing the virial presiribution function can be written g29]
sure. _ _ _ @) N 2
In elastic systems, velocity correlations are also present, [ (1,268(r,=0)=0(—r>vip)f"(1,2)
but only in nonequilibrium regimes. The intensity of the cor-
relations re.duces as the system apprqaqheg equilibrium. In + i®(r12' Vlz)ﬁ*féz)(l,Z)-
granular fluids, on the other hand, the dissipative character of a?
collisions puts the system always out of equilibrium, creating (A1)
velocity correlations. The observed correlations are intrinsic

to granular fluids since they are present in every regine. The first term is the precollisional distribution function
There is no need for special initial conditions or boundary;(2) ‘The second term represents the postcollisional distribu-

conditions to optaln and co_mpute thgm. This allowed us Qion function, written in terms of the precollisional one. The
compute them in a very simple regime, the homogeneous B* has the eff f replacing th lociti ith th
cooling state, with very high precision at the shortest pos_operat(.). as the effect of replacing the velocities with the
sible scale, the microscopic one. precollisional values, and the factoraf/ comes from the

The presence of these correlations implies that the Enskor?'[{‘ange in relative velocity and the Jacobian of the transfor-

factorization(1) is insufficient to compute the static proper- a_?gn[l?]. - e S
ties of the fluid: pressure, collision frequency, and dissipa- e postcollisional part of the pair distribution function is
tion rate. For elastic fluids, Enskog’s equation, even if it is arthen

approximation, accurately predicts static properties. An. _

equivalent approach for dissipative systems would need tr?fa( (120112 v1p) 8(r1,~ 0)
use of a kinetic theory that includes velocity correlations,
even in the HCS. More complex theories like ring kinetic
theory [38,171 or mode coupling theorie$39] are then
needed to describe dense granular fluids at finite dissipatio

= a 2 (1%,29)O(r 15 V10 8(r 15— 0), (A2)

where I and 2* represent the state of the particles with
r[5‘recollision velocities.

To simplify notation we will consider a collision in 2D;
ACKNOWLEDGMENTS for the 3D case, the analysis is similar and the results are

. ) . . ) _summarized at the end. The geometry of the collision is rep-
We wish to thank J. Piasecki for useful discussions. Thi§esented in Fig. 3. The postcollisional relative velocity is

work was *supported by a European Commission DG 1%, . the precoliisional relative velocity ig%,, ando is the
Grant PSS*1045 and by a grant from FNRS Belgium. One of qctor that joins the centers of the two particles. The angles
us (R.S) acknowledges a grant from MIDEPLAN. 6, (precollision and 6, (postcollision are defined as

APPENDIX: RELATION BETWEEN THE POST _ VIZ' g
6,=cos ! (A3)
AND PRECOLLISIONAL PART OF x(6) 1 vt |
In this appendix we will deduce the expressid®). The
deduction is based on the transformation of the distribution 0.=cos 1 Vi O (Ad)
function at collisions and in geometrical aspects of the col- 2 v |
lision rule.

The instantaneous character of binary collisions in the The collision rule implies that
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tar( 02) =—a 1tar{ 61) (AS)
thus

6,=m—tan (atan 6,)). (AB)

The pair correlation function at contag( ) is defined as

|

where the factor H? guarantees the correct normalization.

For postcollisional angled,(?)(1,2) can be expressed in
terms of the precollisional velocities using E&2). Chang-
ing integration variables we obtain

Vlz' g

dv,dv,da,

(A7)

#—cos !

x(0)= if 13(1,2)9
n? ’ V1o

VlZ' g

1 (2)(1* —~1 * kA A
X(Q)ZR fo(1%,2%) 6| 6—cos dvidvido,

U12
o< w2, (A8)

where it has been used thadw,dv,= adv} dv} [17].

PHYSICAL REVIEW E63 041303
1 2i -1 (2)1%
x(0)= F[cosz(e)m Sirf(6)] fP(1%,2%)

al

V12

*
Vio'

X 8| —tan” Y(atan 0))— cosl(

0<l2, (A9)

where the transformation rule for the delta function has been
used. The integral can be identified as the pair correlation

X dv¥ dvi de,

function at contact for the precollisional anglgem
—tan Y(atan(9))]
x(0)=[cog(6)+ a?sirt(6)] x[
—tan Yatan 9))], 6<m/2 (A10)

that is, the postcollisional part of(#) can be computed
using the precollisional values.
In 3D, we define the pair correlation function that depends

on the solid angle) that forms the relative velocity and the

relative position, where() is represented as usual by the
anglesd and ¢. As the tangential components of the relative
velocity are preserved at the collisiot; = ¢,. The change
on the normal component of the relative velocity implies the
relation(A6). Using the generic relation of the delta function
S(O—0")=58(6—0")8(¢p— ¢")I|sin(d)| and that |sin(6y)|
=|sin(#,)|, it is found by a similar analysis as in the 2D case
that

x(Q)=[coS(0)+ a?sirP(6)] x(Q%), o<ml2,

(A11)

The argument of the delta function can be changed to

precollisional velocities using Eq§A3), (A4), and (A6)

where(* is the precollisional solid angle.
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