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Statistical mechanics of fluidized granular media: Short-range velocity correlations

R. Soto and M. Mareschal
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~Received 5 July 2000; published 26 March 2001!

A statistical mechanical study of fluidized granular media is presented. Using a special energy injection
mechanism, homogeneous fluidized stationary states are obtained. Molecular dynamics simulations and theo-
retical analysis of the inelastic hard-disk model show that there is a large asymmetry in the two-particle
distribution function between pairs that approach and separate. Large velocity correlations appear in the
postcollisional states due to the dissipative character of the collision rule. These correlations can be well-
characterized by a state dependent pair correlation function at contact. It is also found that velocity correlations
are present for pairs that are about to collide. Particles arrive at collisions with a higher probability that their
velocities are parallel rather than antiparallel. These dynamical correlations lead to a decrease of the pressure
and of the collision frequency as compared to their Enskog values. A phenomenological modified equation of
state is presented.
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I. INTRODUCTION

There has been much interest recently devoted to the
scription of granular media. The understanding of th
physical properties is important because they appear in m
different phenomena taking place in our daily life as well
in various industrial processes. Experiments have been
vised which have permitted one to focus on many differ
and new aspects. When subjected to injection of energy~vi-
brated plates, for example!, they present many similaritie
with fluids: convection takes place, patterns can form, a
time-periodicity may be observed@1–8#.

For those fluidized granular media, careful investigatio
have permitted one to test the adequacy of hydrodynam
continuum equations generalized to take into account the
sipation of energy due to the inelasticity of the collisio
between the grains. Those equations are usually closed
the help of an equation of state and of phenomenolog
laws inspired by the hard sphere model for fluids@9–14#.
Also, kinetic theory models have been studied obtain
good accord with computer simulations in the low dens
cases@15–17#.

In most of these works, granular media are described
croscopically by means of the inelastic hard sphere~IHS!
model. Grains are modeled as soft hard spheres that diss
energy at collision through a constant restitution coeffici
a. It is quite remarkable that such a simple model can
ready account for many peculiarities of the observed beh
ior @18–20#.

In this paper we would like to go one step further: nam
to investigate the IHS model as if it was a genuine statist
mechanical model for a granular fluid, and examine the
fects of the inelasticity on the statistical properties of t
fluid. An obvious difference is the absence of any equil
rium state. Left to itself, an assembly of inelastic ha
spheres will evolve towards a final state with no motion. O
can, however, achieve stationary states by allowing con
with an energy reservoir, but those states are nonequilibr
states with a permanent energy flow coming from the re
voir and dissipated at collisions into the internal elasticity
the grains~and neglected for our purpose!. It is our aim to
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describe these nonequilibrium steady states~NESSs!, consid-
ering the dissipativityq, defined asq5(12a)/2, as the pa-
rameter responsible for deviations from the equilibrium ha
sphere system.

Letting a system composed of IHS grains to evolve fre
with periodic boundary conditions, it cools down homog
neously. This homogeneous cooling state~HCS! has been
widely studied@16,19,21,22#, and because of its simplicity
the HCS has been used as a reference state to build up
ries for nonhomogeneous states. It is the analog of the e
librium state~with a Maxwellian distribution! for elastic sys-
tems@23–25#. Among other features, it has been shown th
in this state, the velocity distribution function is not Max
wellian, having a nonvanishing fourth cumulant and a lo
velocity tail @22#. Also, long-range velocity correlations ar
developed in the form of vortex fluctuations@26#.

It has been realized that, for any given value of the inel
ticity, however small, there is always a size over which t
homogeneous reference state loses its stability. The sys
undergoes a transition towards a state with a shear flow s
taneously developing and possibly towards an inhomo
neous clustered state@11,18,19,27,28#. In order to character-
ize intrinsic properties like an equation of state, one need
consider stable homogeneous states before any instability
curs. This means in general to consider slight inelastici
and finite system sizes where 1/N effects are present,N being
the number of grains.

Computer simulation techniques have proven very va
able in granular studies: as in molecular dynamics~MD!,
computers are used to integrate numerically the equation
motion of a few hundred to a few thousand grains who
interaction is usually limited to inelastic collisions. The com
puted behavior compares generally well with experimen
which give confidence in the adequacy of the inelastic h
sphere model to account for most of the specificities
granular fluids. We are going to use such a technique wi
mechanism added in order to keep the kinetic energy of
grains constant.

The essential result obtained is the characterization
short-range correlations which are built in granular flu
models and which determine both the static~equation of
©2001 The American Physical Society03-1
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R. SOTO AND M. MARESCHAL PHYSICAL REVIEW E63 041303
state! and dynamical properties~kinetic equation! of the
granular fluid. The pressure of the stationary state is co
puted from its mechanical definition and we can show tha
is related to the pair correlation function at contact for p
collisional configurations only. This induces an extra va
able in the pair correlation function, the angle between re
tive distance and relative velocity at collision.

Second, the kinetic description of the stationary state
well-described by the~modified! hierarchy equations. In or
der to write a closed equation for the one-particle distribut
function, like the Enskog equation for hard spheres, so
assumptions are made on the two particle distribution fu
tion. In Enskog’s equation, it is assumed that the partic
that collide do not have velocity correlations~or dynamical
correlations!. When two particles are at contact with a
proaching velocities~precollisional state!, it is assumed tha
the two particle distribution functionf (2) can be well-
approximated by@29#

f (2)~r1 ,v1 ,r2 ,v2!Q~2v12•r12!d~r 122s!

5x f (1)~v1! f (1)~v2!Q~2v12•r12!d~r 122s!, ~1!

wherex5g(s1) is the pair correlation function at conta
and the Heaviside function guarantees that it is a prec
sional state. Note that in elastic systems at equilibrium,
previous relation is exact. We show here that this assump
is no longer true for inelastic hard spheres, with an increa
probability that colliding disks or spheres are parallel rat
than antiparallel, at least for moderately dense fluids. S
velocity correlations might also appear in elastic fluids b
only under nonequilibrium regimes~typically over macro-
scopic scales!. Here they appear on the shortest scales, th
which correspond to molecular distances, only because o
dissipative character of the microscopic dynamics.

The article is organized as follows: first, we present w
some detail the simulation technique which has been u
As already mentioned, we simulate grain dynamics at c
stant energy: at every collision, all particle velocities are r
caled so as to keep the total kinetic energy constant.
present the technique and emphasize in particular its equ
lence with a time-rescaling change. Next we analyze
pressure and the pair-correlation function in the station
state by making time averages of observables and config
tions. The analysis leads in particular to the need to cons
velocity correlations which, as will be shown, are also
sponsible for a pressure drop. This is done in the fou
section, before the conclusions.

II. CONSTANT ENERGY SIMULATIONS
OF THE IHS MODEL

In the HCS the system is in a nonstationary state that d
not allow one to make time averages of different propert
It is then necessary to inject energy into the system in or
to keep it stationary. Different methods have been us
mainly the injection of energy through the walls~vibrating or
stochastic!, by external fields~like the flow in a pipe!, or by
stochastic forces acting on the particles~see, for example
@30#!. These methods have the disadvantage of destro
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the homogeneity of the fluid or, in the case of the stocha
forces, adding other dynamical effects@31#.

In this article we use a thermalizing method that bo
preserves the homogeneity and the dynamical propertie
the granular fluid. Formally, each time two particles collid
the dissipated energy is reinjected immediately into the s
tem by multiplying all particle velocities by the same facto
This factor is chosen each time in order to keep kinetic
ergy constant. As the IHS model does not have an intrin
energy~or time! scale the rescaling of all velocities does n
change the evolution of the system, the collision seque
~thus all physical phenomena! is preserved but viewed at
different speed. In this sense this thermostating mechanis
the most appropriate for the HCS.

In this nonequilibrium steady state~NESS! all macro-
scopic quantities are stationary and can be averaged in
merical simulations. If we set the initial energy to give
temperature equal to one, then all averaged quantities co
spond to computing them at this temperature. To obtain
value at another temperature, simple dimensional anal
gives the desired value. For example, ifpNESS is the com-
puted pressure in the NESS, the actual value of the pres
at another temperatureT is p5pNESST.

The IHS model is simulated using event driven molecu
dynamics@32#. A direct implementation of the thermalizin
method would lead to a computational cost proportional
the total number of particles for each collision, making
impossible to make long simulations. But we can take adv
tage of the lack of an energy scale to make it much faster
effect, rescaling all velocities is equivalent to rescaling t
time. We define a rescaled time by the relationds5gdt with

g5AE~ t !

E~0!
, ~2!

whereE is the total energy in the system. Note thatg is a
piecewise constant decreasing function. It can be dire
checked that if rescaled velocities are defined asṽ5dr /ds,
then the rescaled kinetic energy (K̃5(m/2ṽ i

2) is conserved.
This transformation has been successfully used to study
shearing instability@28#.

Then, the simulation is done for the cooling IHS mod
~that is, no velocity rescaling is done! but at each collision
the new kinetic energy is computed andg is evaluated using
Eq. ~2!. In the simulation, then, the energy and the avera
velocity decrease, but the rescaled velocities are comp
using ṽ5v/g. Having the rescaled velocities, all the sta
properties can be computed directly. Since the functiong is
a piecewise constant function, thes-time can be integrated in
the simulation; this allows one to make periodical measu
ments in the NESS~equally spaced ins).

Finally, to avoid roundoff errors, each time the kinet
energy has decreased by some orders of magnitude~typically
1027 of the initial value! a real velocity rescaling is done t
return the temperature equal to one. In this process the ce
of mass velocity is also subtracted because, otherwise, s
errors will be amplified by the rescaling.
3-2
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STATISTICAL MECHANICS OF FLUIDIZED GRANULAR . . . PHYSICAL REVIEW E63 041303
As already mentioned the HCS becomes unstable~shear-
ing instability! for certain values of dissipativity, density
and system size. Given values for the dissipativity and d
sity, the system size~number of particles! is constrained to
be smaller than a certain value to keep the system hom
neous. In two dimensions for a low density and low dissip
tion case, it is given by@19#

Nmax5
p

qn
. ~3!

For larger densities there are more complex express
written in terms of the transport coefficients, but in all cas
there is a maximum system size over which the system
comes unstable. This phenomenon does not allow on
simulate large systems~for example, for n50.2 and q
50.02, Nmax5800) and finite size effects are obtained. T
avoid these effects, simulations with different numbers
particles are done and then the results are extrapolated t
infinite size limit. The extrapolation is done using the sta
dard model for any quantity that does not vanish in this lim
that is, for any quantityA its size dependence is modeled

A~N!5A`1A1 /N. ~4!

WhenNmax is smaller than around 1000, the effects of t
shearing instability are present before the critical value
fluctuations in thek52p/L mode of the shearing velocit
@28#. These fluctuations have both large amplitudes and l
correlation times~divergent at the critical point!. Some quan-
tities couple strongly with this fluctuating field~for example,
the pressure! and small system sizes must be studied to
trapolate to infinity.

We present a series of simulations in two dimensions
the IHS model in the nonequilibrium steady state alrea
described. Dimensions are chosen such that the disk d
eter, particle masses, and initial temperature are set equ
one. The simulations are done at three different number d
sities (n5N/V): n50.05, n50.1, andn50.2. In each case
the dissipation coefficient takes the valuesq50, q50.002,
q50.005, q50.01, andq50.02. Given the small values o
the dissipation coefficients, long simulations are needed
obtain good statistics in order to identify theq-dependence o
the different quantities.

As the simulations are done for small dissipations,
results are presented as a series in the coefficientq. Also,
when possible, the results are condensed in power ex
sions in the density, but these expressions must not be in
preted as assuming that these quantities are necessarily
lytic in density or dissipativity.

Finally, units are chosen such that the disk diameters and
the particles masses are set to one. Also, the temperatu
the NESS is fixed to one.

III. VIRIAL PRESSURE

As in granular media there is no equivalent to a free
ergy or an entropy, the pressure cannot be defined ther
dynamically but only mechanically. We use the virial expre
sion for the pressure@33# that is a mechanical definition vali
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for any isotropic system composed of particles that inter
with pairwise forces. If the total volume isV and the total
kinetic energy isK, in two dimensions the pressure is give
by

p5
^K&
V

2
1

4V K (
iÞ j

r i j •Fi j L . ~5!

In the NESS, kinetic energy is constant and equal toN
and the forces are impulsive ones. Using the collision rule
is easy to check that the forces are given by

Fi j 52~12q!uvi j • r̂ i j u r̂ i j d~ t2t i j !, ~6!

wheret i j is the collision time for the pairi 2 j , and the rela-
tive velocity is evaluated before the collision.

Then, if the average is written as a time average, the d
functions are integrated giving

p5n1
12q

4Vt (
colls

uvi j •r i j u, ~7!

wheret is the averaging time.
In simulations we measure the quantity

p15
12q

Ncolls
(
colls

uvi j •r i j u ~8!

in terms of which the total pressure is given by

p5n1
nn

4
p1 , ~9!

wheren is the collision frequency.
The results from the simulations fitted linearly withq are

p1~n50.05!51.772~12q!20.163q,

p1~n50.1!51.772~12q!20.262q,

p1~n50.2!51.772~12q!20.528q. ~10!

That collected can be fitted to

p15Ap~12q!22.67qn. ~11!

The average in Eq.~5! can also be written as an ensemb
average

p5n1
~12q!

4V E f (2)~1,2!uv12•r12u2

3Q~2v12•r12!dr1dv1dv2du, ~12!

whereu is the angle between the relative velocity and t
relative position. Assuming lack of velocity correlations
collisions, the two particle distribution function can be r
placed by Eq.~1!. In this case, the integrals can be do
explicitly giving
3-3
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R. SOTO AND M. MARESCHAL PHYSICAL REVIEW E63 041303
p5n1
n2p~12q!x

2
. ~13!

Then, in this approximation,p1 can be expressed as

p15
2npx

n
~12q!. ~14!

To study the validity of this approximation and compare
with the numerical results~11!, we need to study the pai
correlation function at contact,x, and the collision fre-
quency,n.

A. Pair correlation function at contact

For hard particles systems, the pair correlation function
contact x is defined in elastic systems asx5g(r 5s1),
whereg(r ) is the pair correlation function ands is the par-
ticle diameter. In granular media this definition is somew
ambiguous and a direct application of the classical comp
tional methods@34# to obtainx does not give the most rel
evant result.

The pair correlation function is defined in elastic syste
as the probability of having two particles separated at a
tancer, with an adequate normalization. This definition do
not take into account the relative motion of the two partic
since it is known that in equilibrium, positions are not co
related with velocities. But, as it is shown below, in granu
media, positions and velocities are highly correlated eve
the low density limit. The pair correlation function behav
differently if the two particles approach or separate.

In Enskog’s kinetic theory, thex factor that appears in
Eq. ~1!, in the collisional term, in the virial pressure, and
the transport coefficients must be understood as the pair
relation function at contact for particles that are approach
and not for the ones that separate. In what follows we de
and describe the basic properties of a generalizedx coeffi-
cient that depends on the dynamical state of the particle

We define the pair correlation functiong(r ,u) as propor-
tional to the number of pairs that are separated by a dista
r and there is an angleu between the relative position an
the relative velocity. The normalization is chosen such thag
goes to one for large distances. This function is compute
an analogous way as the usual pair correlation function@34#.
The generalized pair correlation function at contactx(u) is
defined asx(u)5g(r 5s1,u).

Two classes of pairs can be identified according to
value of the angleu: if cos(u) is positive then the particle
are separating~postcollisional states!, and if it is negative the
two particles approach~precollisional states!. In the Appen-
dix we show that the postcollisional part ofx(u) can be
expressed in terms of the precollisional one. Using the co
sion rule and the conservation of probability during a co
sion it is found that ifu,p/2 ~postcollisional!

x~u!5@cos~u!21a2sin~u!2#21x@p2tan21
„a tan~u!…#,

~15!

where @p2tan21
„a tan(u)…#.p/2 is the precollisional

angle that gives the postcollisional angleu.
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In the Enskog approximation, the precollisional pair co
relation function is a constantx0. In this approximation, the
complete function is

x~u!5H x0 , cos~u!<0

x0@cos~u!21a2sin~u!2#21, cos~u!.0.
~16!

This function is discontinuous atu56p/2. Its average is

x0
1
2 (11 1

a ), which can be understood knowing that the po
collisional normal relative velocity isa times smaller than
the precollisional one. That makes that the colliding p
rests 1/a times longer in the postcollisional position, givin
the previously obtained average~formally the time the par-
ticles stay at contact is zero, butx is the limit of g(r ) that
can be well-defined for finite bins where the pair stays fin
times!.

This kind of discontinuity inx(u) has been found in
sheared elastic fluids@29#. In that case the origin of the dis
continuity is the nonequilibrium character of the one-parti
distribution function. In our case it is originated by the no
conservative collision rule.

The discontinuity inx(u) makes that the extrapolation o
g(r ,u) to contact presents numerical problems. For the p
collisional anglesg is a smooth function but for the postco
lisional ones there is a discontinuity line arriving atu5p/2
that prevents one from obtaining good estimations ofx for
angles slightly belowp/2. In Fig. 1 a numerical estimation
of x(u) obtained in MD simulations for a low density case
presented. The comparison with the Enskog theoretical va
@Eq. ~16!# is good except for 80°,u,90° where it was ex-
pected to fail.

In the clustering regime of large systems~where the sys-
tem is no longer homogeneous! a large dependence ofx on u
has been observed, for the precollisional angles@35,36#. In
our case, statistical errors in the results of molecular dyna
ics simulations do not allow one to determine if there is

FIG. 1. Estimation ofx(u) obtained in MD simulations~dots!
compared to the theoretical prediction. The simulation parame
areN51000,n50.02, andq50.1. The discrepancy nearu5p/2 is
explained in the text.
3-4
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STATISTICAL MECHANICS OF FLUIDIZED GRANULAR . . . PHYSICAL REVIEW E63 041303
dependence for precollisional angles, contrary to the c
dependence for the postcollisional angles. Neverthelessx
depends on the precollisional angle, it is small and not l
the one reported in the clustering regime.

We define the pair correlation function at contact,x, as
the average ofx(u) over the precollisional angles only. Th
simulation results forx, fitted linearly withq, are

x~n50.05!5110.065510.051q,

x~n50.1!5110.138910.053q,

x~n50.2!5110.312910.070q. ~17!

An empirical expression forx in the two-dimensional
~2D! elastic case is@37#

x~q50!511
p~2524np!

4~42np!2
n. ~18!

A comparison with the measured values show that, for
IHS model, there is a very small dependence onq. Within
the statistical error it can be said thatx does not depend onq
and its value is the same as in the elastic case.

B. Velocity distribution and collision frequency

It is known that the velocity distribution function for th
HCS of the IHS model is not a Maxwellian but a distort
one. In the low velocity region, it is predicted that the four
cumulant is not zero and using the Boltzmann-Enskog eq
tion its valve has been predicted@22#. The fourth cumulant is
defined as

k45
^v4&22^v2&2

^v2&2
~19!

and the predicted value using the Boltzmann–Enskog eq
tion is for small values ofq

k4'22q122.875q2. ~20!

The fourth cumulant is measured in the MD simulatio
obtaining values consistent with the theoretical prediction

The collision frequencyn is defined as the average num
ber of collisions per particle and units-time. So defined,n is
a stationary quantity. The simulation results fitted linea
with q are

n~n50.05!50.18920.0042q,

n~n50.1!50.40320.022q,

n~n50.2!50.92920.277q. ~21!

The collision frequency can be estimated using the
proximation that there are no velocity correlations at cont
@Eq. ~1!#. Taking into account the distortion from the Max
wellian velocity distribution, the collision frequency is give
by @22#
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k4

32D , ~22!

wherex must be understood as the precollisional value.
Both x and the term (12k4/32) have a positive depen

dence onq, but the MD results~21! show a negative one
This discrepancy shows that the hypothesis of lack of vel
ity correlations is false and must be modified. Also, when
numerical values forx @Eq. ~17!# and n @Eq. ~21!# are re-
placed in the approximation~14! for p1 the predicted pres-
sure is larger than the MD value~11!. That is, using the
approximation that the two-particle distribution function c
be factorized as in Eq.~1! the predicted pressure is large
than the observed one.

IV. VELOCITY CORRELATIONS AT COLLISIONS

Special MD measurements are done to study the sourc
the discrepancies in pressure and collision frequency.
compute numerically collisional averages sensible to
presence of velocity correlations at contact for precollisio
states.

For a system composed of particles that interact with h
core forces, the collision probability is given in two
dimensions by

dPcoll~1,2!}uv12•ŝu f (2)~1,2!d~r122ŝ!

3Q~2v12•r12!dŝdv1dv2dr1dr2 , ~23!

where s is the particle diameter andQ is the Heaviside
function that restrict the velocities to precollisional state
Collisional averages, defined as the average of any qua
at every collision in the system, can be computed using
previous probability distribution.

^A&coll(2)5
1

nnE A~1,2! f (2)~12!uv12•ŝu

3Q~2v12•ŝ!dŝdv1dv2 ~24!

5
1

nnE A~1,2! f (2)~12!uv22v1udbdv1dv2 ,

whereb is the impact parameter. The sign (2) in the aver-
age means thatA is evaluated with the precollisional veloc
ties and thatr25r12ŝ. It must be remarked that the abov
defined collisional average only takes into account the p
collisional part off (2).

In the hypothesis of absence of precollisional veloc
correlations at contact, the two particle distribution functi
is written as in Eq.~1!. As the mean velocity vanishes, th
approximation implies that the following collisional averag
should vanish.

G5 K v1•v2

uv22v1u L
coll(2)

. ~25!
3-5
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R. SOTO AND M. MARESCHAL PHYSICAL REVIEW E63 041303
It must be remarked that in an elastic fluid at equilibrium E
~1! is exact andG must vanish exactly.

This property makesG a good test for the hypothesis o
the lack of velocity correlations in stationary states. T
quantity couples strongly with the velocity fluctuation
careful extrapolation to the infinite system must be done
Fig. 2 we show the extrapolation procedure for a typi
series of simulations. For small system sizesG is negative as
a consequence of the conservation of total momentum
finite systems if one particle has a velocityv0 the others have
in average a velocity equal to2v0 /(N21), leading to nega-
tive values forG. For large systems, the shearing instabil
appears giving rise to a dramatic increase ofG. To get the
extrapolated value to infinite system size, we consider s
tems up to a certain size where no signal of the instability
present (N51500 in the case of the figure!.

After extrapolation to infinity system size, the obtain
results fitted linearly withq are

G~n50.05!50.097q,

G~n50.1!50.269q,

G~n50.2!50.442q. ~26!

That can be collected in the general expression

G52.29qn. ~27!

This result means that in effect there are short-range
locity correlations with origins in the dissipative character
the fluid. The fact that the correlation is positive means t
particles arrive at collisions with velocities more paral
than if there were no correlations. This phenomenon can
understood in terms of recollisions since, for the IHS mod
the velocities of the particles after a collision become m
parallel than in the elastic case. This parallelization has
effects: first it increases the probability of having a reco
sion ~that is, after colliding with a third particle the tagge

FIG. 2. Values ofG obtained in MD simulations for an elasti
case and a dissipative case as a function of the inverse of the
ber of particlesN. The solid circle indicates the extrapolated val
for the dissipative system. The global density isn50.1.
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pair recollides! and, second, when the pair recollides, th
velocities are correlated, being more parallel. Theq depen-
dence and density dependence can be well-understood in
model because the parallelization is proportional toq and the
recollision probability ton.

This interpretation is also supported by the results in pr
sure and collision frequency. In effect, the parallelization
velocities after collisions produces that, in recollisions, t
approaching relative velocities are smaller, decreasing
collision frequency. Also the transferred momentum, wh
averaged givesp1, is smaller at each collision. The comb
nation of these two effects gives that the velocity correlatio
produce smaller values for the pressure. The fact that
effects of the correlations inG andp1 are numerically simi-
lar is also an indication that the two effects have the sa
origin.

At low density, precollision velocity correlations ar
small. This explains the good agreement between the si
lations and the theoretical predictions using Enskog’s the
for x(u) in Fig. 1.

Precollisional velocity correlations are also present
elastic fluids, but only under nonequilibrium conditions. Lo
frequency and long wavelength phenomena~where hydrody-
namics is valid! are usually studied as perturbations ov
local equilibrium states where no velocity correlations ex
In granular fluids, the system is always out of equilibriu
and velocity correlations are always present. For a given
sipation, there is no regime with no velocity correlatio
around which perturbation analysis can be done.

In elastic fluids, the factorization~1! is exact at equilib-
rium and it allows one to compute static properties like t
pressure and the collision frequency. From this start
point, the Enskog equation is built to describe the time e
lution of the system in an approximate way~it neglects pre-
collisional velocity correlations in every regime!. To mimic
the Enskog approach for granular fluids, we should take
equation that includes velocity correlations, even in the HC
in order to predict accurately the static properties: press
collision frequency, and dissipation rate.

At low density and/or dissipation, the velocity correl
tions are small. Then the Boltzmann–Enskog equation
be used to describe granular fluids with the same degre
approximation as for elastic fluids. For dense dissipative s
tems more complex theories, that take into account reco
sions~for example, ring equations@38,17#!, are necessary.

V. CONCLUSIONS

Different properties for the IHS model for granular fluid
put in the homogeneous cooling state, have been care
studied. Using a time rescaling formalism it was possible
obtain precise averages in MD simulations, allowing one
study the dissipation and density dependence of these p
erties. Dissipation took values fromq50 to q50.02 and
number density fromn50.05 ton50.2.

In all cases it was found that the velocity distribution
not Maxwellian and the fourth cumulantk4 is different from
zero. Its value does not depend on density and it is in g
accord with the kinetic theory predictions.

m-
3-6
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STATISTICAL MECHANICS OF FLUIDIZED GRANULAR . . . PHYSICAL REVIEW E63 041303
A distinction is made between the pair correlation fun
tion at contact for precollisional and postcollisional stat
The first is the one used in kinetic theory~Enskog’s theory!
and it was found that is has a very small dependence
dissipation, taking the same value than for elastic disks.
postcollisional pair correlation function takes larger valu
and it can be fully predicted in terms of the precollision
function.

Collisional averages indicate that particles that are ab
to collide are correlated in a nontrivial way, particles arri
at collisions with velocities that are more parallel than in
elastic fluid. The computed correlation, that is proportio
to density and dissipation, has its origin in recollisions: d
to dissipation, particles that collide emerge with more pa
lel velocities than in the elastic case and, when they re
lide, their velocities are still more parallel. Results obtain
for pressure and collision frequency also show the signa
of velocity correlations at collisions. The effect of these c
relations is to reduce the collision frequency and the tra
ferred momentum at collisions, thus reducing the virial pr
sure.

In elastic systems, velocity correlations are also pres
but only in nonequilibrium regimes. The intensity of the co
relations reduces as the system approaches equilibrium
granular fluids, on the other hand, the dissipative characte
collisions puts the system always out of equilibrium, creat
velocity correlations. The observed correlations are intrin
to granular fluids since they are present in every reg
There is no need for special initial conditions or bounda
conditions to obtain and compute them. This allowed us
compute them in a very simple regime, the homogene
cooling state, with very high precision at the shortest p
sible scale, the microscopic one.

The presence of these correlations implies that the Ens
factorization~1! is insufficient to compute the static prope
ties of the fluid: pressure, collision frequency, and dissi
tion rate. For elastic fluids, Enskog’s equation, even if it is
approximation, accurately predicts static properties.
equivalent approach for dissipative systems would need
use of a kinetic theory that includes velocity correlation
even in the HCS. More complex theories like ring kine
theory @38,17# or mode coupling theories@39# are then
needed to describe dense granular fluids at finite dissipa
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APPENDIX: RELATION BETWEEN THE POST
AND PRECOLLISIONAL PART OF x„u…

In this appendix we will deduce the expression~15!. The
deduction is based on the transformation of the distribut
function at collisions and in geometrical aspects of the c
lision rule.

The instantaneous character of binary collisions in
04130
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hard sphere~disk! system implies that the two-particle dis
tribution function can be written as@29#

f (2)~1,2!d~r 122s!5Q~2r12•v12! f 0
(2)~1,2!

1
1

a2
Q~r12•v12!b̂* f 0

(2)~1,2!.

~A1!

The first term is the precollisional distribution functio
f 0

(2) . The second term represents the postcollisional distri
tion function, written in terms of the precollisional one. Th
operatorb̂* has the effect of replacing the velocities with th
precollisional values, and the factor 1/a2 comes from the
change in relative velocity and the Jacobian of the trans
mation @17#.

The postcollisional part of the pair distribution function
then

f (2)~1,2!Q~r12•v12!d~r 122s!

5a22f 0
(2)~1* ,2* !Q~r12•v12!d~r 122s!, ~A2!

where 1* and 2* represent the state of the particles wi
precollision velocities.

To simplify notation we will consider a collision in 2D
for the 3D case, the analysis is similar and the results
summarized at the end. The geometry of the collision is r
resented in Fig. 3. The postcollisional relative velocity
v12, the precollisional relative velocity isv12* , ands is the
vector that joins the centers of the two particles. The ang
u1 ~precollision! andu2 ~postcollision! are defined as

u15cos21S v12* •s

v12*
D , ~A3!

u25cos21S v12•s

v12
D . ~A4!

The collision rule implies that

FIG. 3. Geometry of an inelastic collision.v12* (v12) is the in-
coming ~outgoing! relative velocity ands is the normal vector to
the collision.
3-7
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tan~u2!52a21tan~u1! ~A5!

thus

u15p2tan21
„a tan~u2!…. ~A6!

The pair correlation function at contactx(u) is defined as

x~u!5
1

n2E f (2)~1,2!dFu2cos21S v12•s

v12
D Gdv1dv2dŝ,

~A7!

where the factor 1/n2 guarantees the correct normalization
For postcollisional angles,f (2)(1,2) can be expressed i

terms of the precollisional velocities using Eq.~A2!. Chang-
ing integration variables we obtain

x~u!5
1

an2E f 0
(2)~1* ,2* !dFu2cos21S v12•s

v12
D Gdv1* dv2* dŝ,

u,p/2, ~A8!

where it has been used thatdv1dv25adv1* dv2* @17#.
The argument of the delta function can be changed

precollisional velocities using Eqs.~A3!, ~A4!, and~A6!
.

ev

al

04130
o

x~u!5
1

n2
@cos2~u!1a2sin2~u!#21E f 0

(2)~1* ,2* !

3dF2tan21
„atan~u!…2cos21S v12* •s

v12*
D G

3dv1* dv2* dŝ, u,p/2, ~A9!

where the transformation rule for the delta function has b
used. The integral can be identified as the pair correla
function at contact for the precollisional angle@p
2tan21

„a tan(u)…#

x~u!5@cos2~u!1a2sin2~u!#21x@p

2tan21
„a tan~u!…#, u,p/2 ~A10!

that is, the postcollisional part ofx(u) can be computed
using the precollisional values.

In 3D, we define the pair correlation function that depen
on the solid angleV̂ that forms the relative velocity and th
relative position, whereV̂ is represented as usual by th
anglesu andf. As the tangential components of the relati
velocity are preserved at the collision,f15f2. The change
on the normal component of the relative velocity implies t
relation~A6!. Using the generic relation of the delta functio
d(V̂2V̂8)5d(u2u8)d(f2f8)/usin(u)u and that usin(u1)u
5usin(u2)u, it is found by a similar analysis as in the 2D ca
that

x~V̂!5@cos2~u!1a2sin2~u!#21x~V̂* !, u,p/2,
~A11!

whereV̂* is the precollisional solid angle.
s.
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